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The mean stopping power for high-energy muons in matter can be described by h�dE=dxi =
a(E) + b(E)E, where a(E) is the ionization stopping power and b(E) is the energy-scaled contri-
bution from radiative processes|bremsstrahlung, pair production, and photonuclear interactions.
a(E) and b(E) are both slowly-varying functions of the muon energy E. Tables of these stopping
power contributions and continuous-slowing-down-approximation (CSDA) ranges (which neglect
straggling e�ects) are given for a variety of elements, compounds, and mixtures for incident kinetic
energies in the range 10 MeV to 100 TeV. Tables of the contributions to b(E) are given for the
same materials.
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1. Introduction

The mean stopping power for high-energy muons (or other heavy charged particles) in a material
can be described by [1]

h�dE=dxi = a (E) + b (E)E ; (1:1)

where a(E) is the ionization stopping power and b(E) is due to radiative processes|bremsstrahlung,
pair production, and photonuclear interactions:

b � bbrems + bpair + bnucl (1:2)

The notation is convenient because a(E) and b(E) are very nearly constant at high energies where
radiative contributions are important.

For (approximately) constant a and b, the range of a muon with initial energy E0 is given by

R � (1=b) ln (1 +E0=E�c) ; (1:3)

where E�c = a=b is a muon critical energy. The muon critical energy can be de�ned more precisely
as the energy at which ionization and radiative losses are equal, in analogy to one of the ways of
de�ning the critical energy for electrons. It is obtained by �nding E�c such that

a (E�c) = E�cb (E�c) : (1:4)

The range as obtained from the integral

R =

Z E0

0

[a (E) + b (E)E]
�1
dE (1:5)

is of limited usefulness, particularly at higher energies, because of the e�ect of uctuations. For
example, the cosmic ray muon intensity falls very rapidly with energy, so that the ux observed
at a given depth underground is dominated by lower-energy muons whose energy-loss uctuations
have allowed them to penetrate more deeply. We nonetheless calculate the \continuous-slowing-
down-approximation" (CSDA) range given by Eq. (1:5) as an indicator of actual muon range.

Tables of muon energy loss from a 1985 CERN internal report by Lohmann, Kopp, and Voss [2]
have become the de facto world standard. This careful work serves as the benchmark for the
present e�ort. Later theoretical work enables us to improve the calculations for low-Z elements
(2 � Z � 10) and to make minor improvements elsewhere.

It is our intention to make this report suÆciently self-contained that the interested user can
replicate our calculations, even though this results in our giving often-tedious detail. The necessary
constants for ionization loss calculations and tables of b(E) for elements, for the mean radiative
loss calculations, are available as ascii �les at http://pdg.lbl.gov/computer read.html. These
tables are more extensive than the subset of data actually used in this paper.

We present tables of stopping power and mean range for muons from kinetic energy T = 10 MeV
to 100 TeV for most elements and a variety compounds and mixtures. Tables of b(E) are given for
the same materials. In the case of elemental gases, tables are also given for the liquid state.
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2. Notation

Table 2.1: De�nitions of most of the variables used in this report. The electronic
charge e and the kinematic variables � = v=c and  =

p
1� �2 have their usual

de�nitions. � and velocity v are used interchangeably, depending on context.
Constants are from CODATA Recommended Values of the Fundamental Physical

Constants: 1998 [3]. In Sect. 5 the convention c = 1 is used.

Symbol De�nition Units or Value

� Fine structure constant e2=4��0�hc 1=137:035 999 76(50)
M Incident particle mass MeV/c2

E Incident particle energy Mc2 MeV
T Kinetic energy ( � 1)Mc2 MeV

mec
2 Electron mass � c2 0:510 998 902(21) MeV/c2 MeV

re Classical electron radius e2=4��0mec
2 2:817 940 285(31) fm

NA Avogadro's number 6:022 141 99(47) � 1023 mol�1

ze Charge of incident particle
Z Atomic number of medium
A Atomic mass of medium g mol�1

K=A 4�NAr
2
emec

2=A 0:307 075 MeV g�1 cm2 for A = 1 g mol�1

I Mean excitation energy eV (Note bene! )
Æ Density e�ect correction to ionization energy loss

�h!p Plasma energy
p
4�Ner3e mec

2=� 28:816
p
� hZ=Ai eV(a)

Ne Electron density (units of re)
�3

wj Fraction by weight of the jth element in a compound or mixture
nj / number of jth kind of atoms in a compound or mixture
E�c Muon critical energy GeV

(a) For � in g cm�3.

3. Overview

The behavior of stopping power (= h�dE=dxi) in copper over twelve decades of muon kinetic energy
is shown by the solid curves in Fig. 3.1. Data below the breaks in the curves are from ICRU 49 [4],
while data above the breaks are from our present calculations. Approximate boundaries between
regions described by di�erent theories or phenomenologies are indicated by the vertical bands.
While our main interest is at higher energies, some understanding of the behavior at lower energies
is useful, in particular for starting range integrals.

For � <� �Z, (T � 1 keV in copper; below the �rst grey band in Fig. 3.1), the projectile velocity
is small compared with that of atomic electrons. Lindhard and collaborators have constructed a
successful semi-phenomenological model to describe ionizing energy losses in this regime, approxi-
mating the electronic structure of solids by a Fermi distribution [6]. The stopping power is found
to be proportional to the projectile velocity. This region is marked by the dashed curve with the
dotted extension in Fig. 3.1. However, below � � 0:001{0.01 nonionizing energy losses via nuclear
recoil become increasingly signi�cant [4], �nally dominating energy loss at very low energies.

Above � � 0:05 or 0.1 (the second grey band in Fig. 3.1) one may make the opposite ap-
proximation, neglecting electronic motion within atoms. There is no satisfactory theory for the
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Figure 3.1: Stopping power (= h�dE=dxi) for positive muons in copper as a func-
tion of kinetic energy (top �gure, 12 orders of magnitude range) and as a function
of � = p=Mc (bottom �gure, 9 orders of magnitude). Solid curves indicate the
total stopping power. Data below the break at T � 0:5 MeV are taken from
ICRU 49 [4], and data at higher energies are from the present calculations. Verti-
cal bands indicate boundaries between di�erent approximations. The short dotted
lines labeled \�� " illustrate the \Barkas e�ect" [5]. \Nuclear losses" indicates
non-ionizing nuclear recoil energy losses, which dominate at very small energies.
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intermediate region, �Z < � < 0:1 (but see Ref. 7). There is, however, a rich experimental litera-
ture, which Anderson and Ziegler have used to construct phenomenological �ts bridging the regions
in which there is adequate theoretical understanding [8]. This is the interval between the grey
bands shown in Fig. 3.1.
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Figure 3.2: Minimum ionization as a function of Z. The straight line is �tted
for Z � 6.

Ionization losses in the high-velocity region are well described by Bethe's theory based on a
�rst-order Born approximation [9], to which are added a number of corrections for the low-energy
region and to account for the polarization of the medium at high energies. The curve falls to a
broad minimum whose position for solid absorbers decreases from � = 3:5 to 3.0 as Z goes from 7
to 100. The mean ionization loss at the minimum value as a function of Z is shown in Fig. 3.2. The
rise with further increases of the projectile energy (labeled \without Æ" in Fig. 3.1) is less marked
when the polarization e�ects are taken into account (dash-dotted curve).

Ionization losses at very high energies are somewhat modi�ed by bremsstrahlung from the
atomic electrons [10] and other e�ects, such as form factor corrections [11]. These are of decreased
importance because radiative e�ects rapidly become the dominant energy loss mechanism above
a few tens of GeV for even intermediate-Z absorbers. Radiative losses in copper dominate above
E�c = 315 GeV. The radiative contribution, and hence the entire energy loss rate, becomes nearly
linear with energy above 1 TeV or so.
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4. Ionization energy losses of high-energy heavy particles

The formulae needed to describe the average ionization energy losses of a high-energy (� � �Z)
massive (6= electron) charged particle as it passes through matter have been reviewed elsewhere
[4, 12{15]. ICRU 49 is particularly thorough, although it is limited to protons and alpha particles
(except for a short �� table) and to proton energies less than 10 GeV, corresponding to E < 1:1 GeV
for muons. In this energy region nuclear recoil contributes negligibly to energy loss, and radiative
losses can be added as an independent contribution.

For the moment, we leave open the possibilities that the charge is ze and that the particle
might be something other than a muon. We briey review the subject here in order to emphasize
high-energy behavior.

4.1. Major contributions

The energy loss rate (h�dE=dxi, stopping power S, or a(E)) is calculated by summing the con-
tributions of all possible scatterings. These are normally from lower to higher energy states, so
the particle loses a small amount of energy in each scattering. The kinetic energy of the scattered
electron is Q.

The matrix elements needed to �nd the cross sections are calculated using approximations
appropriate to di�erent Q regions. The following summarizes the detailed discussions by Rossi [12]
and Fano [13].

1. Low-Q region. Here the reciprocal of the 3-momentum transfer (roughly an impact parameter)
is large compared with atomic dimensions. The scattered electrons have kinetic energies up to
some cuto� Q1, and the contribution to the stopping power is

Slow =
K

2
z2
Z

A

1

�2

�
ln

Q1

I2=2mev2
+ ln2 � �2

�
; (4:1)

where I is the appropriately weighted average excitation energy. The denominator I2=2mev
2

in the �rst (logarithmic) term is the e�ective lower cuto� on the integral over dQ=Q. This
term comes from \longitudinal excitations" (the ordinary Coulomb potential), and the next
two terms from transverse excitations.

The low-Q region is associated with large impact parameters and hence with long distances.
Polarization of the medium can seriously reduce this contribution, particularly at high energies
where the transverse extension of the incident particle's electric �eld becomes substantial. The
correction is usually made by subtracting a density-e�ect term Æ, discussed below, inside the
square brackets of Eq. (4:1).

2. Intermediate- and high-Q regions. In an intermediate region atomic excitation energies are not
small compared with Q, but transverse excitations can be neglected. At higher energies Q
can be equated to the energy given to the electron, neglecting its binding energy. When the
integration of the energy-weighted cross sections is carried out from Q1 to some upper limit
Qupper, one obtains

Shigh =
K

2
z2
Z

A

1

�2

�
ln
Qupper

Q1

� �2Qupper

Qmax

�
: (4:2)

Here Qmax is the kinematic maximum possible electron recoil kinetic energy, given by

Qmax =
2mec

2�22

1 + 2me=M + (me=M)
2

: (4:3)
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Figure 4.1: Mean excitation energies (divided by Z) as adopted in ICRU 37 [18].
Those based on experimental measurements are shown by symbols with error ags;
the interpolated values are simply joined. The solid point is for liquid H2; the open
point at 19.2 is for H2 gas. The dotted curve is from the approximate formula of
Barkas [16].

Qupper is normally equal to Qmax (as will be the case after the conclusion of this section), and
cannot exceed Qmax. The more general form given in Eq. (4:2) is useful in considering restricted
energy loss, which is of relevance in considering the energy actually deposited in a thin absorber.
At high energies the �rst term in the square brackets dominates. If Qupper is restricted to
some maximum value, e.g. 0.5 MeV, then Shigh is essentially constant for Qmax > Qupper.
If Qupper = Qmax the high-Q region stopping power rises with energy as lnQmax. In other
words, the increase of Shigh with energy is associated with the production of high-energy recoil
electrons, or Æ-rays.

In Fano's discussion the low-energy approximation Qmax � 2mec
2�22 = 2mep

2=M 2 is implicit.
Accordingly, Eq. (4:2) is more closely related to Rossi's form (see his Eqns. 2.3.6 and 2.5.4).
This low-energy approximation is made in many papers of the Bevatron era, but is in error by
a factor of two for a muon with T = 10:817 GeV. Note that Qmax ! E at very high energies.

4.2. Mean excitation energy

\The determination of the mean excitation energy is the principal non-trivial task in the evaluation
of the Bethe stopping-power formula" [17]. Recommended values have varied substantially with
time. Estimates based on experimental stopping-power measurements for protons, deuterons, and
alpha particles and on oscillator-strength distributions and dielectric-response functions were given
in ICRU 37 [18]. These were retained in ICRU 49, where a useful comparison with other results
is given [4], and they are used in the EGS4 [19] electron/photon transport code. We use them in
the present calculations. These values (scaled by 1=Z) are shown in Fig. 4.1. The error estimates
are from Table 2 in Ref. 17. As can be seen, I=Z ' 10 � 1 eV for elements heavier than sulphur.
Given the availability of these constants and their sensitivity to atomic shell structure, there is
little reason to use the once-common approximate formulae.
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4.3. Low-energy corrections

There is no guarantee that a value of Q1 can be found which simultaneously satis�es the approxi-
mation requirements of the high- and low-energy regions. Q1 is much less than me but much larger
than (any) electron's binding energy|a situation that becomes paradoxical for high-Z materials
and low projectile energies. The standard solution is the addition of an \inner shell correction"
term �2C=Z inside the square brackets of Eq. (4:2). A careful modern discussion of this correction
is given in Ref. 4. The algorithm is not given completely enough to permit calculation, and depends
on unpublished reports which are not generally available.

The shell correction is insigni�cant at the energies of interest in this report. However, even
at intermediate energies it can be signi�cant for \starting" the range integral. To investigate
its importance, and to compare our results with the proton dE=dx and range-energy tables in
ICRU 49 [4], we have used the now-superseded analytic approximation introduced by Barkas [16]:

C =
�
0:422377��2 + 0:0304043��4 � 0:00038106��6

�
� 10�6I2

+
�
3:858019��2 � 0:1667989��4 + 0:00157955��6

�
� 10�9I3 ;

(4:4)

where � = � and I is in eV. This form is valid only for � > 0:13 (T = 7:9 MeV for a proton,
0.89 MeV for a muon).

In early Bevatron experiments Barkas et al. [5] found that negative pions had a somewhat
greater range than positive pions with the same (small) initial energy. This was attributed to a
departure from �rst-order Born theory [20], and is normally included by adding a term zL2(�)
to the stopping-power formula. The e�ect has been measured for a number of negative/positive
particle pairs, most recently for antiprotons/protons at the CERN LEAR facility [21]. It is
illustrated by the �� stopping-power segment shown in Fig. 3.1.

Bethe's stopping power theory is based on a �rst-order Born approximation. To obtain Bloch's
result, a term z2L2(�) is added if results accurate at low energies are desired.

These corrections are discussed in detail in ICRU 49, and are mentioned here for completeness.
They are not signi�cant at the energies of concern in this report.

4.4. Density e�ect

As the particle energy increases its electric �eld attens and extends, so that the distant-
collision part of dE=dx (Eq. (4:1) increases as ln�. However, real media become polarized, limiting
this extension and e�ectively truncating part of this logarithmic rise. This \density e�ect" has been
extensively treated over the years; see Refs. 19, 22, and 23, and references therein. The approach
is to subtract a density-e�ect correction, Æ, from the distant-collision contribution, resulting in the
Æ=2 term in Eq. (4:9). At very high energies,

Æ=2! ln (�h!p=I) + ln� � 1=2 ; (4:5)

where �h!p is the plasma energy de�ned in Table 2.1. A comparison with Eq. (4:9) shows that
a(E) grows as ln� rather than ln�22, and that the excitation energy I is replaced by the plasma
energy �h!p. The e�ect of the density correction is shown in Fig. 3.1.

At some low energy (related to x0 below) the density e�ect is insigni�cant, and above some high
energy (see x1 below) it is well described by the asymptotic form given in Eq. (4:5). Conductors
require special treatment at the low-energy end. Sternheimer has proposed the parameterization [24]

Æ =

8>><
>>:
2 (ln 10) x� C if x � x1;

2 (ln 10) x� C + a (x1 � x)
k

if x0 � x < x1;
0 if x < x0 (nonconductors);
Æ010

2(x�x0) if x < x0 (conductors) ,

(4:6)
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where x = log10(p=M) = log10 �. C is obtained by equating the high-energy case of Eq. (4:6)
with the limit of Eq. (4:5), so that C = 2 ln(I=�h!p) + 1. The other parameters are adjusted to give
a best �t to the results of detailed calculations for x0 < x < x1. Note that C is the negative of
the C used in earlier publications. A variety of di�erent parameters are available. In some cases
these result from a di�erent �tting procedure having been used with the same model, and although
the parameters look di�erent the resulting Æ is not sensibly di�erent. For elements, the PEGS4
data [19] use the values from Ref. 26.

In a series of papers by Sternheimer, Seltzer, and Berger, the density-e�ect parameter tables
are extended to nearly 300 elements, compounds, and mixtures.1 The chemical composition of the
materials is given in Ref. 17. The agreement with more detailed calculations or results obtained
with other parameter sets is usually at the 0.5% level [25]. We use the tables given in Ref. 22 for
most of the present calculations.2

The densities used in these tables are occasionally in error, or, in the case of some polymers
with variable density, out of the usual range. The most serious is for the density of SiO2, for
which 2.32 g/cm3 was used in calculating the density-e�ect parameters. This may be the density
of cristobalite. The density of crystalline quartz is about 2.65 g/cm3, and the density of fused
quartz is typically 2.20 g/cm3. In this and other cases we use Eq. (AppendixA:8) [23] to adjust the
coeÆcient; such cases are marked by footnotes in Tables 8.1 and 8.2.

There remains the problem of obtaining the density-e�ect parameters if they have not been
tabulated for the material of interest. This issue is of particular importance here in the case of
cryogenic liquids such as N2, but is also of interest when dealing with a compound or mixture not
tabulated by Sternheimer, Berger, and Seltzer [22]. The algorithm proposed by Sternheimer and
Peierls [23] is discussed in Appendix A.

To some degree, both the adjustment of the parameters for a di�erent density and the Stern-
heimer{Peierls algorithm can be checked by using those cases in the tables where parameters are
given for di�erent densities of the same material. When the \compact carbon" parameters are
adjusted to the two other tabulated carbon densities, the di�erence in stopping power and range
with those obtained directly is less than 0.2%. Calculation of parameters for a cryogenic liquid
using the Sternheimer{Peierls algorithm can be checked for hydrogen and water. This method was
used to calculate parameters for liquid hydrogen at bubble chamber density (0.060 g/cm3), using
the excitation energy for the liquid; at worst, at minimum ionization, h�dE=dxi was low by 2.5%,
while the range was high by 1.1%. Deviations were smaller elsewhere. When the algorithm was
used to calculate parameters for water using the excitation energy for steam, the result was 1%
higher at minimum ionization than that obtained directly with the water parameters. Only a slight
improvement was obtained by using the excitation energy given for water.

Hydrogen is always a worst case, and in any case we scale the parameters from the bubble
chamber liquid to those of liquid hydrogen at one atmosphere rather than using the Sternheimer{
Peierls algorithm. We conclude that the results in this report obtained with parameters scaled
to di�erent densities are accurate to within the 0.5% agreement level estimated by Seltzer and
Berger [25], and that the parameters calculated for cryogenic liquids (except hydrogen) using the
Sternheimer{Peierls algorithm could be in error by slightly over 1% at minimum ionization, and
less elsewhere.

1
The formula and parameters for lanthanum oxysul�de are corrected in a footnote in Ref. 25.

2
Given the power of modern computers, experts now calculate the density e�ect from �rst principles

rather than use these formulae [27]. One problem along the way is knowing the mean excitation energy,

which can be di�erent for condensed and gas states of the same substance and even depends upon density. In

our case radiative e�ects dominate over most of the relevant energy range, and no great error is engendered

by using the user-friendly parameterized forms.
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4.5. Other high-energy corrections

Bremsstrahlung from atomic electrons in the case of incident muons was considered in a 1997 paper
by Kelner, Kokoulin, and Petrukhin [10]. There are four lowest-order diagrams: Photon emission
by the muon before and after photon exchange with the electron, and emission by the electron
before and after photon exchange. The former diagrams result in losses nearly proportional to E,
and are described by Eq. (5:6). The latter are properly part of ionization losses, and produce an
additional term in the stopping power. To leading powers in logarithms, this loss is given by their
Eq. 31:

�

����dEdx
���� = K

4�

Z

A
�

�
ln

2E

M�c2
� 1

3
ln
2Qmax

mec2

�
ln2

2Qmax

mec2
(4:7)

As Kelner et al. observe, this addition is important at high energies, amounting to 2% of the
ionization loss at 100 GeV and 4% at 1 TeV. It is included in our calculations.

An additional spin-correction term, (1=4)(Qmax=E)
2, is included in the square brackets of

Eq. (4:2) if the incident particle is a muon (point-like and spin 1/2) [12]. Its contribution to
the stopping power asymptotically approaches 0.038 (Z=A) MeV g�1cm2, reaching 90% of that
value at 200 GeV in most materials. In iron its fractional contribution reaches a maximum of
0.75% at 670 GeV. Although this contribution is well within uncertainties in the total stopping
power, its inclusion avoids a systematic bias.

At energies above a few hundred GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV/c, so that, in the case of incident pions, protons, and other hadrons, cross sections
are modi�ed by the extended charge distributions of the projectiles. One might expect this \soft"
cuto� to Qmax to reduce the ionization stopping power. This problem has been investigated by
J. D. Jackson [11], who concluded that corrections to dE=dx become important only at energies
where radiative losses dominate. At lower energies the stopping power is almost unchanged, since
its average, dominated by losses due to many soft collisions, is insensitive to the rare hard collisions.
For muons the spin correction replaces this form-factor correction.

Jackson and McCarthy [28] have pointed out that the Barkas correction calculated by Fermi
(but see their Ref. 20) persists at high energies; to the close-collision part of Eq. (4:9) should be
added

Kz3
Z

A

��

2�
; (4:8)

which is �0:00176 MeV g�1 cm2 for z = �1, Z=A = 1=2 and � = 1. This correction produces
range di�erences of a few parts per thousand between positive and negative muons near minimum
ionization. At higher energies sign-indi�erent radiative e�ects dominate. We neglect this correction.

4.6. Bethe-Bloch equation

We summarize this discussion with the Bethe-Bloch equation for muons in the form used in this
paper: �

�dE
dx

�
= K

Z

A

1

�2

"
1

2
ln
2mec

2�22Qmax

I2
� �2 � Æ

2
+
1

8

Q2
max

(Mc2)
2

#
+�

����dEdx
���� (4:9)

The �nal term, for bremsstrahlung from atomic electrons, is given by Eq. (4:7).
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Table 4.1: Comparison of stopping power calculations for protons (in MeV
g�1 cm2) with those of ICRU 49.

10 MeV 100 MeV 1 GeV 10 GeV

Hydrogen gas (Z = 1)
This calculation 101.7 15.29 4.496 4.539
ICRU 49 101.9 15.30 4.497 4.539

Graphite (Z = 6; � = 1:7 g/cm
3
)

This calculation 40.72 6.514 1.942 1.883
ICRU 49 40.84 6.520 1.946 1.881

Iron (Z = 26)
This calculation 28.54 5.045 1.575 1.603
ICRU 49 28.56 5.043 1.574 1.601

Tin (Z = 50)
This calculation 22.26 4.177 1.351 1.426
ICRU 49 22.02 4.165 1.349 1.423

Lead (Z = 82)
This calculation 17.52 3.532 1.189 1.291
ICRU 49 17.79 3.552 1.186 1.288

Uranium (Z = 92)
This calculation 16.68 3.388 1.144 1.243
ICRU 49 16.90 3.411 1.140 1.242

Liquid water
This calculation 45.94 7.290 2.210 2.132
ICRU 49 45.67 7.289 2.211 2.126

4.7. Comparison with other ionizing energy loss calculations

Comparisons with the ICRU 49 proton tables have been made by running our code with the proton
mass. A summary of the stopping power comparisons is given in Table 4.1, and of the CSDA range
comparisons in Table 4.2. In general the agreement is regarded as adequate, but is worse at high
atomic number and low energy. The simple screening correction given by Eq. (4:4) has been used,
and under these conditions somewhat overcorrects.

ICRU 49 compares their tabulated stopping powers for protons at 6.5 and 73 MeV, with the
conclusion that di�erences are \mostly smaller than 1% and hardly ever greater than 2," and in
the case of compounds and mixtures \the uncertainties are approximately three times as large as
in the case of elements" [4].

Our muon tables start at T = 10 MeV, corresponding to a proton energy of about 100 MeV,
so that only 100 MeV and above is relevant in the proton comparisons. For uranium the stopping
power at 100 MeV is low by 0.8% and the range high by 1.9%. Without the screening correction
the stopping power for this case is high by 1.7% and the range low by 2.5%. We make the screening
correction only for elements. We conclude that in a worst-case scenario, e.g., PuCl4 (which we do
not tabulate) at 10 MeV, our results could be in error by nearly 3%. For lower-Z materials the
agreement is consistent with ICRU 49. In any case the agreement improves rapidly with increasing
energy.
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Table 4.2: Comparison of CSDA range calculations for protons (in g cm�2) with
those of ICRU 49.

10 MeV 100 MeV 1 GeV 10 GeV

Hydrogen gas
This calculation 0.0534 3.636 158.7 2254.
ICRU 49 0.0535 3.633 158.7 2254.

Graphite (Z = 6; � = 1:7 g/cm
3
)

This calculation 0.1361 8.634 367.4 5333.
ICRU 49 0.1377 8.627 367.0 5337.

Iron (Z = 26)
This calculation 0.2013 11.36 459.2 6383.
ICRU 49 0.2064 11.37 459.6 6389.

Tin (Z = 50)
This calculation 0.2623 13.90 540.9 7272.
ICRU 49 0.2764 13.95 541.9 7291.

Lead
This calculation 0.3315 16.79 620.7 8120.
ICRU 49 0.3528 16.52 621.7 8143.

Uranium
This calculation 0.3462 17.56 645.2 8432.
ICRU 49 0.3718 17.24 646.8 8456.

Liquid water
This calculation 0.1201 7.710 325.4 4703.
ICRU 49 0.1230 7.718 325.4 4700.

Lohmann et al. [2] list ionization losses separately for hydrogen, iron, and uranium. Since they
do not consider the contributions of bremsstrahlung from atomic electrons (Eq. (4:7)), we have
made comparisons with this correction \turned o�." Under these conditions, our results disagree
by at most 2 in the 4th decimal place, presumably from di�erent rounding of the density-e�ect
parameters.

5. Radiative losses

5.1. Direct e+e� pair production

The cross section for direct e+e� pair production in a Coulomb �eld was �rst calculated by
Racah [29]. Atomic screening was later taken into account by Kelner and Kotov [30]. With their
approach, the average energy loss is obtained through a three-fold numerical integration. With
the simple parameterization of the screening functions proposed by Kokoulin and Petrukhin [31],
one obtains a double di�erential cross section for e+e� production. This formula is widely used in
muon transport calculations (for example, see Ref. 2). Based on this work, a (rather complicated)
analytic form for the energy spectrum of pairs created in screened muon-nucleus collisions was
derived by Nikishov [32]. The explicit formula is given in Appendix B. The average energy loss
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for pair production is calculated by numerical integration:

bpair; nucl = � 1

E

dE

dx

����
pair; nucl

=
NA

A

Z 1

0

v
d�

dv
dv (5:1)

The same expression as for the nucleus is usually used to calculate the pair production con-
tribution from atomic electrons, with Z2 replaced with Z (e.g., Ref. 2). A more precise approach
has recently been developed by Kelner [33], who proposed a simple parameterization of the energy
loss based on a rigorous QED calculation. This formula for the electronic contribution to pair
production energy loss by muons is valid to within 5% of the more laborious numerical result for
E > 5 GeV, and is used for the present calculations:

bpair; elec = � 1

E

dE

dx

����
pair; elec

=
Z

A

�
0:073 ln

�
2E=M

1 + g Z2=3E=M

�
� 0:31

�
� 10�6cm2/g (5:2)

Here g = 4:4� 10�5 for hydrogen and g = 1:95 � 10�5 for other materials.

5.2. Bremsstrahlung

The cross section for electron bremsstrahlung was obtained by Bethe and Heitler [34]. In case
of muons, it is necessary to take into account nuclear screening, which was �rst done consistently
by Petrukhin and Shestakov [35]. A simple approximation for medium and heavy nuclei (Z > 10)
was derived. Lohmann, Kopp, and Voss [2] also used this approximation for Z < 10, by setting
the nuclear screening correction equal to zero for these cases. As a result, their bremsstrahlung
contribution for low-Z nuclei is overestimated by about 10%.

The CCFR collaboration [36] revised the Petrukhin and Shestakov [35] results, pointing out
that Ref. 35 overestimates the nuclear screening correction by about 10%. Kelner et al. [37] later
observed that the CCFR conclusion probably resulted from an incorrect treatment of the Bethe
formula. Their new calculations were in good agreement with the old ones by Petrukhin and
Shestakov for medium and heavy nuclei, but in addition they proposed an approximation for light
nuclei. An independent analysis was performed by the Bugaev group (see, e.g., Ref. 38). The Bethe
formula is a particular case of their approach. The Petrukhin and Shestakov and the Bugaev group
results for bremsstrahlung on screened nuclei agree to within a few percent.

All of the formulae mentioned above were derived in the Born approximation. It was recently
shown [38] that the non-Born corrections in the region of low and high momentum transfers have
the same order of magnitude but opposite signs. As a result, they nearly compensate each other.

The di�erential cross section for muon bremsstrahlung on (screened) nuclei given in Ref. 37 is
used for the present paper:

d�

dv

����
brems; nucl

= �

�
2Z

me

M
re

�2 �4
3
� 4

3
v + v2

�
�(Æ)

v
(5:3)

Here v is the fraction of energy transferred to the photon, and

� (Æ) = ln

 
BMZ�1=3=me

1 + Æ
p
eBZ�1=3=me

!
��n (Æ) ; (5:4)

where Dn = 1:54A0:27, B = 182:7 (B = 202:4 for hydrogen), e = 2:7181 : : :, Æ = M 2v=2E(1 � v);
and the nuclear screening correction �n is given by

�n = ln

�
Dn

1 + Æ (Dn

p
e� 2) =M

�
: (5:5)
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To account for bremsstrahlung losses on atomic electrons, Z2 in Eq. (5:3) is usually replaced
with Z(Z + 1) (e.g., see Ref. 2). A more precise approximation, taking into account electronic
binding and recoil, is given by [10],

d�

dv

����
brems; elec

= �Z

�
2
me

M
re

�2 �4
3
� 4

3
v + v2

�
�in (Æ)

v
: (5:6)

In this case

�in (Æ) = ln

�
M=Æ

MÆ=m2
e +

p
e

�
� ln

�
1 +

me

Æ BZ�2=3
p
e

�
; (5:7)

where B = 1429 for all elements but hydrogen, where B = 446, and Æ =M 2v=2E(1� v); as above.

The average energy loss h�dE=dxi due to bremsstrahlung is calculated by integrating the sum
of these cross sections, as in Eq. (5:1).

5.3. Photonuclear interactions

Several approaches have been developed to calculate the muon photonuclear cross section. The
most widely used is that of Bezrukov and Bugaev [39]:
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(5:8)

Here " is the energy loss of the muon and �N(") is the photoabsorption cross section de�ned below.
Other values are given by

v =
"

E
; t =

M 2v2

1� v
; � = 1� 2

v
+

2

v2
; and G (x) =

3

x3

�
x2

2
� 1 + e�x (1 + x)

�
; (5:9)

x = 0:00282A1=3�N("), m
2
1 = 0:54 GeV2, and m2

2 = 1:8 GeV2. This cross section gives results
consistent with other calculations to within 30% [2]. Recent measurements of photonuclear
interaction of muon in rock performed by the MACRO collaboration [40] agree quite well with
Monte Carlo simulations based on the Bezrukov and Bugaev cross section.

The total cross section �N(") for the photon-nucleon interaction appears as a normalization
parameter in Ref. 39, which proposes a simple parameterization:

�N (") (in �b) = 114:3 + 1:647 ln2 (0:0213 ") (5:10)

This approximation is good enough only for energies " > 5 GeV. For smaller ", we use the ex-
perimental data given by Armstrong et al. [41,42]. The energy loss contribution is calculated by
numerical integration of the di�erential cross section given by Eq. (5:8). The use of a more precise
photo-absorption cross section for " < 5 than was used in the original model [39] does not change
the photonuclear part of h�dE=dxi appreciably.
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Table 5.1: Comparison of btot calculations with those reduced from Lohmann et

al. [2] and, in the case of standard rock, with Gaisser and Stanev [43]. 106 btot is
listed, in units of g�1 cm2.

Total energy = 10 GeV 100 GeV 1 TeV 10 TeV 100 TeV

Hydrogen gas
This calculation 0.941 1.345 1.773 2.079 2.284
Lohmann et al. 1.081 1.463 1.814 2.046 |

Carbon
This calculation 1.278 1.972 2.548 2.859 3.030
*Lohmann et al. 1.3 2.14 2.679 2.958 |

Iron
This calculation 3.290 5.701 7.392 8.110 8.371
Lohmann et al. 3.312 5.795 7.444 8.128 |

Uranium
This calculation 8.234 14.614 18.747 20.308 20.760
Lohmann et al. 8.046 14.790 18.870 20.360 |

Water
This calculation 1.439 2.279 2.959 3.313 3.497
*Lohmann et al. 1.5 2.49 3.125 3.459 |

Standard rock
This calculation 1.777 2.912 3.779 4.194 4.386
*Lohmann et al. 1.8 3.10 3.960 4.361 |
Gaisser & Stanev 1.91 3.12 4.01 4.40 |
Carlson 2.11 3.19 3.96 4.30 4.38

Oxygen
This calculation 1.502 2.397 3.108 3.468 3.650
*Lohmann et al. 1.6 2.62 3.290 3.620 |

* Obtained from the Lohmann et al. energy loss tables assuming our values for
ionization losses (without the bremmstralung correction given by Eq. (4:7)).
The subtraction loses signi�cance at 10 GeV, where the radiative contribution
is small.

5.4. Comparison with other work on muon radiative losses

Selected b values from our present calculations and according to Lohmann et al. [2] are plotted in
Fig. 5.1 and listed in Table 5.1. Since Lohmann et al. did not give the decomposition of the stopping
powers except for H, Fe, and U, values of btot for the materials given in the right half of the �gure
were obtained by assuming our values of the ionizing losses (without the bremsstrahlung correction
given by Eq. (4:7)), which for the �ducial cases agree with their values to within rounding errors
in the 4th place.

For Z > 10 the results are nearly identical. For smaller atomic number, and at low energies,
two e�ects are responsible for the di�erences:

1. In the nuclear part of bremsstrahlung, nuclear screening has only a weak energy dependence,
and produces about a 4% reduction for hydrogen and a 10% reduction for carbon. This is
apparent in our lower values of btot for carbon and water as compared with Lohmann et al..
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Figure 5.1: b-values for a sampling of materials. The dashed lines are from
Lohmann et al. [2]. The circles for standard rock are from Gaisser and Stanev [43].
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2. Bremsstrahlung from atomic electrons decreases at low energy because of electron recoil.
Lohmann et al.'s Z(Z + 1) factor is replaced by Z(Z + 0) in the low-energy limit, so that
for hydrogen our bremsstrahlung contribution for 1{10 GeV is smaller by nearly a factor of
two. Similarly, in the low-energy limit our bremsstrahlung contribution for carbon is 6/7 that
of Lohmann et al.

The CERN RD 34 collaboration has measured the energy loss spectrum of 150 GeV muons
in iron [44]. The energy deposition was measured in prototype hadron calorimeter modules
for the ATLAS detector. Most probable ionization loss was subtracted, as was background from
photonuclear interactions (which in any case is only about 7% of the total cross section). The
remaining sensitivity was to energy loss by pair production (dominant at the smallest energy trans-
fers, 0:01 < v < 0:03), knock-on electrons (Æ rays, included in the high-energy tail of the ionization
loss and dominating for 0:03 < v < 0:12), and bremsstrahlung (dominant for v > 0:12). The
results, expressed as a fraction of the Kelner et al. [10] cross section (basically Petrukhin and Shes-
takov), are shown in Fig. 5.2. Also shown are the CCFR collaboration's revision of the Petrukhin
and Shestakov cross section [36] and Rozental's formula [45], both scaled to the Petrukhin and
Shestakov model used in the present calculations. This model describes the data reasonably well,
while the others are evidently less successful.
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Figure 5.2: RD 34 measurements of radiative losses by 150 GeV muons [44] scaled
by the present model, including bremsstrahlung via Kelner et al. [10]. Heavy error
bars indicate statistical errors only, while the light bars include systematic errors
combined in quadrature. Ratios of alternate models including bremsstrahlung us-
ing Rozental's formula [45] and the CCFR collaboration's revision of the Petrukhin
and Shestakov cross section [36] to our calculations are shown by the solid and
dashed lines, respectively.
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5.5. Muon critical energy

Equation 1.4 de�nes the muon critical energy E�c as the energy for which ionization and radiative
losses are equal. E�c for the chemical elements is shown in Fig. 5.3. The equality of ionization and
radiative losses comes at a higher energy for gases than for solids and liquids because of the smaller
density-e�ect correction for gases. Fits for gases (excluding hydrogen) and for solids (excluding
hydrogen and helium) are shown. Since E�c depends upon ionization potentials and density-e�ect
parameters as well as Z, the �ts cannot be exact. Alkali metals fall 2.6{3.6% above the �tted
function, while most other solids and liquids fall within 2.5% of the �tted function. Among the
gases the worst �t is for neon (1.4% high).
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Figure 5.3: Muon critical energy for the chemical elements. As discussed in the
text, the �tted functions shown in the �gure cannot be exact, and are for guidance
only.
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Appendix A. Stopping power and density-e�ect parameters for compounds

and mixtures

For most of the materials for which tables are given in this report, the relevant e�ective excita-
tion energy and density-e�ect parameters have already been tabulated, and should be used. This
section concerns how to deal with an untabulated compound or mixture.

It is usual to think of a compound or mixture as made up of thin layers of the pure elements
(or, better, constituent compounds for which tabulated data are available) in the right proportion
(Bragg additivity [46]) . Let nj be the number of the jth kind of atom in a compound (it need not
be an integer for a mixture), and wj its weight fraction:

wj = njAj

�X
k

nkAk (AppendixA:1)

Then �
dE

dx

�
=
X
j

wi

dE

dx

����
j

(AppendixA:2)

When the Bethe-Bloch equation is inserted and the radiative terms added, the Z-dependent terms
can be sorted out to �nd that the mixture or compound is equivalent to a single material with

�
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=
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X
j

wjbj (E)

(AppendixA:3)

There are pitfalls in actually using (AppendixA:3) to calculate hIi. Since the electrons in a com-
pound are more tightly bound than in the constituent elements, the e�ective Ij are in general higher
than those of the constituent elements. Exceptions are provided by diatomic gases and by metals
in metallic alloys or compounds. Berger and Seltzer discuss ways to extend the Bragg additivity
rule in lieu of a detailed calculation [17]:

(a) For a select list of materials (carbon and some common gases), they propose alternate mean
excitation energies in their Table 5.1 (or Table 6 in Ref. 17).

(b) For other elements, the excitation energies are multiplied by 1.13 before calculation of the mean
(the \13% rule"). Although it is is not said, it would seem sensible to apply this rule in the case
of a tightly-bound material such as CsI, and not apply it in the case of a metallic compound
like Nb3Sn.

(c) Both are superseded by experimental numbers when available, as in the case of SiO2.

Bragg additivity could be used to calculate the density-e�ect correction as well, but it would
have little meaning. If the material of interest is not available in the Ref. 22 tables, then the algo-
rithm given by Sternheimer and Peierls [23] should be used. Their recipe is given more succinctly
in the EGS4 manual [19], and the following algorithm is modi�ed from that version:

(a) I is obtained as described above

(b) k is always taken as 3.00

(c) C = 2 ln(I=�h!p)+1, with the plasma energy �h!p obtained using the expression from Table 2.1.
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(d) For solids and liquids,

x1 =

8>>><
>>>:
2:0 if I < 100 eV, and x0 =

�
0:2 if C < 3:681
0:326C � 1:0 otherwise

3:0 if I � 100 eV, and x0 =

�
0:2 if C < 5:215
0:326C � 1:5 otherwise

(AppendixA:4)

(e) In the case of gases,

x0 =

8>>>>>>>>>>><
>>>>>>>>>>>:

1:6 and x1 = 4:0 if C < 10:0
1:7 and x1 = 4:0 if 10:0 � C < 10:5
1:8 and x1 = 4:0 if 10:5 � C < 11:0
1:9 and x1 = 4:0 if 11:0 � C < 11:5
2:0 and x1 = 4:0 if 11:5 � C < 12:25
2:0 and x1 = 5:0 if 12:25 � C < 13:804
0:326C � 1:5

and x1 = 5:0 if C � 13:804

(AppendixA:5)

(f)

a =
C � 2 (ln 10) x0

(x1 � x0)
3

: (AppendixA:6)

We have used this algorithm to calculate the density-e�ect coeÆcients for cryogenic liquids,
which are not tabulated by Sternheimer, Berger, and Seltzer [22]. In this case, I for the gas was
used.

One problem remains: Given the density-e�ect parameters, either from the literature [22] or
from the algorithm given above, how does one modify them for the same material at a di�erent
density? This problem occurs for gases at di�erent pressures, or for solid and liquids at di�erent
densities than those tabulated. In an early paper [23], Sternheimer noted that under quite general
conditions

Ær (p) = Æ
�
p
p
r
�
; (AppendixA:7)

where r = �=�0, the ratio of desired to tabulated densities, and the subscript r indicates the quantity
evaluated at the desired density. This implies [23] that

Cr = C � ln r

x0r = x0 � 1

2
log10 r

x1r = x1 � 1

2
log10 r :

(AppendixA:8)

It is easily shown by matching di�erent regions in Eq. (4:6) that the parameters a and k are
unchanged by the transformation.

This method was used to correct the parameters for several materials to more modern density.
For example, in the case of SiO2, the tabulated density is incorrect for both crystalline quartz and
fused silica.

Both algorithms were checked by calculating h�dE=dxi several ways, taking advantage of the
fact that Ref. 22 lists both gaseous and liquid helium, three densities of carbon, and both steam
and liquid water. The comparisons are discussed at the end of Sect. 4.4.
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Appendix B. Direct pair production from screened nuclei

Nikishov's analytic form for the cross section is given by [32]

d�
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����
pair; nucl
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(2�reZ)

2

�

(1� v)
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�
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�
2k0
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�
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�
; A:1

where v is the fraction of energy transferred to the e+e� pair and � = m2
e=M

2. The functions in
the square brackets are given by
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(u1;2, B(u) and w1;2, B(w) are the analogs of z1;2, B(z), i.e., u1;2 = B(u)� 1

2
, etc.),
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8. Explanation of tables3

TABLE I: Muon energy loss rate and CSDA range for selected chemical elements.

The contents of Table I and other information are given in Table 8.1.

The header de�nes the element and state, and gives the parameters used to calculate
the ionization stopping power:

Z: Atomic number.

A: Atomic weight. The number of signi�cant �gures shown varies with element, since
isotopic composition of samples varies; in general the atomic weight of elements with
only one isotope are known to great precision [48].

�: Density. Gas density is evaluated at 20Æ C.

I: Mean excitation energy.

a|Æ0: Sternheimer et al. density e�ect parameters, as introduced in Sect. 4.4 and Eq. (4:6).

The body of the table presents ionizing energy loss (Eq. (4:9)) and the components
of radiative loss rate (see Eqns. 1.1 and 1.2), as well as CSDA range obtained by
integrating the total (Eq. (1:5)), as a function of the muon's initial kinetic energy T .
The spacing of the independent variable is fairly uniform on a logarithmic scale.
The corresponding momentum p is also given. The table is interrupted to show the
points at which minimum ionization and muon critical energy (Eq. (1:4)) occur.

TABLE II: Muon energy loss rate and CSDA range for selected compounds and

mixtures.

The contents of TABLE II and other information are given in Table 8.2. The format
is identical with TABLE I, except that hZ=Ai (Eq. (AppendixA:3)) replaces Z and A.

TABLE III: b values for the elements listed in TABLE I

Interpolation in logE is used to generate the b values shown in TABLE I and for
the ionizing loss calculations.

TABLE IV: b values for the elements listed in TABLE I

TABLE IV has the same format as TABLE III except that hZ=Ai replaces Z and A.

3
Computer-readable versions of these tables can be found at http://pdg.lbl.gov/computer read.html
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Table 8.1: Index of tables for selected chemical elements. Physical states are indicated

by \G" for gas, \D" for diatomic gas, \L" for liquid, and \S" for solid. Gases are evaluated

at one atmosphere and 20
Æ
C. The corresponding cryogenic liquids are evaluated at their

boiling points at one atmosphere, and carbon is evaluated at several typical densities.

Atomic weights are given to their experimental signi�cance. Except where noted, densities

are as given by Sternheimer, Berger, and Seltzer [22].

Element Symbol Z A State � h�dE=dximin E�c h�dE=dxi b Notes

[g/cm
3
] [MeV cm

2
/g] [GeV] & Range

Hydrogen gas H 1 1.00794 D 8:375� 10
�5

4.101 3507. I{ 1 III{ 1

Liquid hydrogen H 1 1.00794 L 7:080� 10
�2

4.031 2995. I{ 2 III{ 1 1

Helium gas He 2 4.002602 G 1:663� 10
�4

1.936 2299. I{ 3 III{ 1

Liquid helium He 2 4.002602 L 0.125 1.935 1964. I{ 4 III{ 1 2

Lithium Li 3 6.941 S 0.534 1.638 1530. I{ 5 III{ 1

Beryllium Be 4 9.012182 S 1.848 1.594 1285. I{ 6 III{ 1

Boron B 5 10.811 S 2.370 1.622 1132. I{ 7 III{ 1

Carbon (compact) C 6 12.0107 S 2.265 1.744 1022. I{ 8 III{ 1

C (amorphous) C 6 12.0107 S 2.000 1.748 1026. I{ 9 III{ 1

Carbon (graphite) C 6 12.0107 S 1.700 1.752 1031. I{10 III{ 1

Nitrogen gas N 7 14.00674 D 1:165� 10
�3

1.824 1122. I{11 III{ 2

Liquid nitrogen N 7 14.00674 L 0.807 1.812 952. I{12 III{ 2 2

Oxygen gas O 8 15.9994 D 1:332� 10
�3

1.800 1022. I{13 III{ 2

Liquid oxygen O 8 15.9994 L 1.141 1.787 862. I{14 III{ 2 2

Fluorine gas F 9 18.9984032 D 1:580� 10
�3

1.675 934. I{15 III{ 2

Liquid uorine F 9 18.9984032 L 1.507 1.633 786. I{16 III{ 2 2

Neon gas Ne 10 20.1797 G 8:385� 10
�4

1.723 883. I{17 III{ 2

Liquid neon Ne 10 20.1797 L 1.204 1.694 736. I{18 III{ 2 2

Sodium Na 11 22.989770 S 0.971 1.638 690. I{19 III{ 2

Magnesium Mg 12 24.3050 S 1.740 1.673 638. I{20 III{ 2

Aluminum Al 13 26.981538 S 2.699 1.614 593. I{21 III{ 3

Silicon Si 14 28.0855 S 2.330 1.663 563. I{22 III{ 3

Phosphorus P 15 30.973761 S 2.200 1.612 535. I{23 III{ 3

Sulfur S 16 32.066 S 2.000 1.652 511. I{24 III{ 3

Chlorine gas Cl 17 35.4527 D 2:995� 10
�3

1.629 576. I{25 III{ 3

Liquid chlorine Cl 17 35.4527 L 1.560 1.608 490. I{26 III{ 3 2

Argon gas Ar 18 39.948 G 1:662� 10
�3

1.519 557. I{27 III{ 3

Liquid argon Ar 18 39.948 L 1.396 1.507 470. I{28 III{ 3 2

Potassium K 19 39.0983 S 0.862 1.622 458. I{29 III{ 4

Calcium Ca 20 40.078 S 1.550 1.654 433. I{30 III{ 4

Titanium Ti 22 47.867 S 4.540 1.476 389. I{31 III{ 4

Vanadium V 23 50.9415 S 6.110 1.436 373. I{32 III{ 4

Chromium Cr 24 51.9961 S 7.180 1.455 359. I{33 III{ 4

Manganese Mn 25 54.938049 S 7.440 1.427 347. I{34 III{ 4

Iron Fe 26 55.845 S 7.874 1.450 336. I{35 III{ 5

Cobalt Co 27 58.933200 S 8.900 1.419 324. I{36 III{ 5

Nickel Ni 28 58.6934 S 8.902 1.467 315. I{37 III{ 5

Copper Cu 29 63.546 S 8.960 1.402 306. I{38 III{ 5

Zinc Zn 30 65.39 S 7.133 1.410 300. I{39 III{ 5

Gallium Ga 31 69.723 S 5.904 1.378 294. I{40 III{ 5
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Table 8.1: continued

Element Symbol Z A State � h�dE=dximin E�c h�dE=dxi b Notes

[g/cm
3
] [MeV cm

2
/g] [GeV] & Range

Germanium Ge 32 72.61 S 5.323 1.370 287. I{41 III{ 6

Bromine gas Br 35 79.904 D 7:072� 10
�3

1.387 316. I{42 III{ 6

Liquid bromine Br 35 79.904 L 3.103 1.384 271. I{43 III{ 6 2

Krypton gas Kr 36 83.80 G 3:478� 10
�3

1.357 314. I{44 III{ 6

Liquid krypton K 36 83.80 G 3:478� 10
�3

1.356 267. I{45 III{ 6 2

Rubidium Rb 37 85.4678 S 1.532 1.356 265. I{46 III{ 6

Strontium Sr 38 87.62 S 2.540 1.353 255. I{47 III{ 6

Yttrium Y 39 88.90585 S 4.469 1.359 246. I{48 III{ 6

Zirconium Zr 40 91.224 S 6.506 1.348 238. I{49 III{ 7

Niobium Nb 41 92.90638 S 8.570 1.342 232. I{50 III{ 7

Molybdenum Mo 42 95.94 S 10.220 1.329 226. I{51 III{ 7

Ruthenium Ru 44 101.07 S 12.410 1.306 216. I{52 III{ 7

Rhodium Rh 45 102.90550 S 12.410 1.309 212. I{53 III{ 7

Palladium Pd 46 106.42 S 12.020 1.288 209. I{54 III{ 7

Silver Ag 47 107.8682 S 10.500 1.298 206. I{55 III{ 8

Cadmium Ce 48 112.411 S 8.650 1.276 203. I{56 III{ 8

Indium In 49 114.818 S 7.310 1.277 201. I{57 III{ 8

Tin Sn 50 118.710 S 7.310 1.263 198. I{58 III{ 8

Antimony Sb 51 121.760 S 6.691 1.258 195. I{59 III{ 8

Iodine I 53 126.90447 S 4.930 1.262 191. I{60 III{ 8

Xenon gas Xe 54 131.29 G 5:485� 10
�3

1.255 222. I{61 III{ 9

Liquid xenon Xe 54 131.29 L 2.953 1.255 191. I{62 III{ 9 2

Cesium Cs 55 132.90545 S 1.873 1.253 190. I{63 III{ 9

Barium Ba 56 137.327 S 3.500 1.230 184. I{64 III{ 9

Lanthanum La 57 138.9055 S 6.154 1.230 179. I{65 III{ 9

Cerium Ce 58 140.116 S 6.657 1.233 176. I{66 III{ 9

Gadolinium Gd 64 157.25 S 7.900 1.187 162. I{67 III{ 9

Holmium Ho 67 164.93032 S 8.795 1.169 155. I{68 III{10

Hafnium Hf 72 178.49 S 13.310 1.151 145. I{69 III{10

Tantalum Ta 73 180.9479 S 16.654 1.149 142. I{70 III{10

Tungsten W 74 183.84 S 19.300 1.144 140. I{71 III{10

Rhenium Re 75 186.207 S 21.020 1.142 138. I{72 III{10

Osmium Os 76 190.23 S 22.570 1.131 136. I{73 III{10

Iridium Ir 77 192.217 S 22.420 1.133 135. I{74 III{11

Platinum Pt 78 195.078 S 21.450 1.128 134. I{75 III{11

Gold Au 79 196.96655 S 19.320 1.133 133. I{76 III{11

Mercury Hg 80 200.59 L 13.546 1.130 133. I{77 III{11

Lead Pb 82 207.2 S 11.350 1.122 131. I{78 III{11

Bismuth Bi 83 208.98038 S 9.747 1.127 130. I{79 III{11

Thorium Th 90 232.0381 S 11.720 1.098 121. I{80 III{12

Uranium U 92 238.0289 S 18.950 1.081 118. I{81 III{12

Plutonium Pu 94 244.064197 S 19.840 1.070 114. I{82 III{12

Notes:

1. Density e�ect parameters adjusted to this density using Eq. (AppendixA:8).

2. Density e�ect parameters calculated via the Sternheimer-Peierls algorithm discussed in Appendix A.
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Table 8.2: Index of tables for selected compounds and mixtures. Physical states are indi-

cated by \G" for gas, \D" for diatomic gas, \L" for liquid, and \S" for solid. Gases are eval-

uated at one atmosphere and 20
Æ
C. Except where noted, densities are those given by Stern-

heimer, Berger, and Seltzer [22]. Composition not explained may be found in Seltzer and

Berger [17] or in the �le properties.dat at http://pdg.lbl.gov/computer read.html.

Compound or mixture hZ=Ai State � h�dE=dximin E�c h�dE=dxi b Notes

[g/cm
3
] [MeV cm

2
/g] [GeV] & Range

Standard rock 0.50000 S 2.650 1.687 671. II{ 1 IV{ 1 4

Adipose tissue (ICRP) 0.55947 S 0.920 2.028 1145. II{ 2 IV{ 1

Air 0.49919 G 1:205� 10
�3

1.815 1085. II{ 3 IV{ 1

Aluminum oxide 0.49038 S 3.970 1.646 683. II{ 4 IV{ 1

Barium uoride (BaF2) 0.42207 S 4.890 1.302 221. II{ 5 IV{ 1

Bismuth germanate (Bi4Ge3O12) 0.42065 S 7.130 1.250 173. II{ 6 IV{ 1

Blood (ICRP) 0.54995 L 1.060 1.970 999. II{ 7 IV{ 2

Compact bone (ICRU) 0.53010 S 1.850 1.848 809. II{ 8 IV{ 2

Cortical bone (ICRP) 0.52130 S 1.850 1.802 725. II{ 9 IV{ 2

Brain (ICRP) 0.55423 S 1.030 1.989 1012. II{10 IV{ 2

Butane (C4H10) 0.59497 G 2:493� 10
�3

2.277 1513. II{11 IV{ 2

Calcium carbonate (CaCO3) 0.49955 S 2.800 1.685 611. II{12 IV{ 2

Calcium oxide (Ca0) 0.49929 S 3.300 1.649 491. II{13 IV{ 3

Carbon dioxide 0.49989 G 1:842� 10
�3

1.818 1065. II{14 IV{ 3

Carbon dioxide, solid (dry ice) 0.49989 S 1.563 1.786 898. II{15 IV{ 3 2

Cesium iodide (CsI) 0.41569 S 4.510 1.242 188. II{16 IV{ 3

Concrete (shielding) 0.50274 S 2.300 1.710 678. II{17 IV{ 3 5

Diethyl ether (CH3CH2)2O) 0.56663 L 0.714 2.070 1181. II{18 IV{ 3

Ethane (C2H6) 0.59861 G 1:253� 10
�3

2.303 1558. II{19 IV{ 4

Ethyl alcohol (C2H5OH) 0.56437 L 0.789 2.053 1140. II{20 IV{ 4

Eye lens (ICRP) 0.54977 S 1.100 1.969 1023. II{21 IV{ 4

Borosilicate glass (Pyrex Corning 7740) 0.49707 S 2.230 1.695 708. II{22 IV{ 4

Lead glass 0.42101 S 6.220 1.255 171. II{23 IV{ 4

Plate glass 0.49731 S 2.400 1.683 650. II{24 IV{ 4

Lithium uroide (LiF) 0.46262 S 2.635 1.613 875. II{25 IV{ 5

Lithium iodide (LiI) 0.41939 S 3.494 1.272 202. II{26 IV{ 5

Lung (ICRP) 0.54965 S 1.050 1.969 998. II{27 IV{ 5

Methane (CH4) 0.62334 G 6:672� 10
�4

2.416 1668. II{28 IV{ 5

Methanol (CH3OH) 0.56176 L 0.791 2.037 1099. II{29 IV{ 5

Skeletal muscle (ICRP) 0.54938 S 1.040 1.969 999. II{30 IV{ 5

Striated muscle (ICRU) 0.55005 S 1.040 1.972 999. II{31 IV{ 6

Nylon (type 6, 6/6) (NH(CH2)5CO)n) 0.54790 S 1.180 1.972 1119. II{32 IV{ 6 1, 3

Octane (C8H18) 0.57778 L 0.703 2.122 1269. II{33 IV{ 6

ParaÆn (CH3(CH2)n�23CH3) 0.57275 S 0.930 2.086 1245. II{34 IV{ 6

Polyvinylchloride (PVC) (C2H3Cl)n 0.51201 S 1.300 1.778 675. II{35 IV{ 6

Polyvinyl tolulene (scintillator) 0.54141 S 1.032 1.955 1156. II{36 IV{ 6

Plutonium dioxide (PuO2) 0.40583 S 11.460 1.157 134. II{37 IV{ 7

Polyethylene ((C2H4)n) 0.57034 S 0.890 2.078 1240. II{38 IV{ 7 1, 3

Polyethylene terephtalate (Mylar) 0.52037 S 1.400 1.847 1017. II{39 IV{ 7

Polymethyl methacrylate (Acrylic) 0.53937 S 1.190 1.928 1071. II{40 IV{ 7

Polystyrene (C6H5CHCH2)n 0.53768 S 1.150 1.931 1142. II{41 IV{ 7 1

Polytetrauoroethylene (Teon) (C2F4)n 0.47992 S 2.200 1.670 827. II{42 IV{ 7
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Table 8.2: continued

Compound or mixture hZ=Ai State � h�dE=dximin E�c h�dE=dxi b Notes

[g/cm
3
] [MeV cm

2
/g] [GeV] & Range

Propane (C3H8) 0.58962 G 1:879� 10
�3

2.261 1514. II{43 IV{ 8

Liquid propane (C3H8) 0.58962 L 0.430 2.196 1321. II{44 IV{ 8

n-propyl alcohol (C3H7OH) 0.56577 L 0.803 2.061 1162. II{45 IV{ 8

Silicon dioxide (fused quartz) (SiO2) 0.49930 S 2.200 1.698 686. II{46 IV{ 8 1, 3

Silicon dioxide (crystalline quartz) 0.49930 S 2.648 1.692 682. II{47 IV{ 8 1

Skin (ICRP) 0.54932 S 1.100 1.968 1024. II{48 IV{ 8

Sodium iodide (NaI) 0.42697 S 3.667 1.304 218. II{49 IV{ 9

Stilbene (C6H5)CHCHC6H5) 0.53260 S 0.971 1.922 1134. II{50 IV{ 9

Testes (ICRP) 0.55108 S 1.040 1.975 1000. II{51 IV{ 9

Soft tissue (ICRP) 0.55121 S 1.000 1.981 1029. II{52 IV{ 9

Soft tissue (ICRU four-component) 0.54975 S 1.000 1.971 1008. II{53 IV{ 9

Liquid water (H2O) 0.55509 L 1.000 1.990 998. II{54 IV{ 9

Water vapor (H2O) 0.55509 G 7:562� 10
�4

2.051 1197. II{55 IV{10

Notes:

1. Density e�ect parameters adjusted to this density using Eq. (AppendixA:8).

2. Density e�ect parameters calculated via the Sternheimer-Peierls algorithm discussed in Appendix A.

3. Actual density may vary from the nominal value listed.

4. For at least two generations, the depth of underground muon experiments has been reduced to depth in

\standard rock." This is by de�nition the overburden of the Cayuga Rock Salt Mine near Ithaca, New

York, where K. Greisen and collaborators made seminal observations of muons at substantial depths [1].

Ref. 1 says only \Most of the ground consists of shales of various types, with average density 2.65 g/cm
2

and average atomic number 11." Menon and Murthy later extended the de�nition:



Z2=a

�
= 5:5,

hZ=Ai = 0:5, and and � = 2:65 g/cm
2
[49]. It was thus not-quite-sodium. Lohmann et al. [2] further

assumed the excitation energy and density e�ect parameters of calcium carbonate, with no adjustments

for the slight density di�erence. We use their de�nition for this most important material.

5. Concrete is a very ill-de�ned material. The composition given in Ref. 17 and on the web page is from

the Reactor Handbook [50].
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